Logistic Regression as a Neural Network #
Architecture #
πΊππ£ππ π₯ , π¦Μ = π(π¦ = 1|π₯), where 0 β€ π¦Μ β€ 1
Parameters of logistic regression
- Input observation,features matrix X
- Target vector Y
- Weights w
- Threshold or bias b
- Output: π¦Μ, sigmoid(z) where z = π€ π *π₯ + π
To get the parameters w and b (i.e. learning), we optimize on:
π½(π€, π) = 1/m (β πΏ(π¦Μ (π) , π¦ (π) ))
i.e.
π½(π€, π) = 1/m(β ylog((π¦Μ) + (1-y)(1-log(1-π¦Μ))))